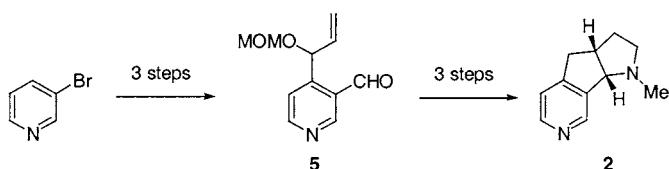


A Facile Synthesis of *cis*-1-Methyl-1,2,3,3a,4,8b-hexahydropyrrolo[3,2-*f*]pyrindine, an Annulated Nicotine Analog

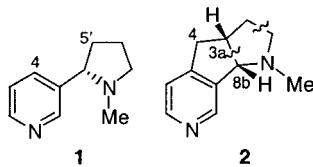

Hongbin Zhai,^{*,†} Peng Liu,[†] Shengjun Luo,[†] Fang Fang,[†] and Mingyue Zhao[‡]

Laboratory of Modern Synthetic Organic Chemistry and State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China 200032, and Zhengzhou Tobacco Research Institute, Zhengzhou, Henan, China 450000

zhaih@pub.sioc.ac.cn

Received September 9, 2002

ABSTRACT



The title compound, 2, has been synthesized in 45% overall yield in six steps from 3-bromopyridine. The hexahydropyrrolo[3,2-*f*]pyrindine skeleton was constructed from key intermediate 5, via intramolecular azomethine ylide-alkene [3 + 2] cycloaddition. The present work constitutes a general method for rapid assembly of other related tricyclic nicotine analogues.

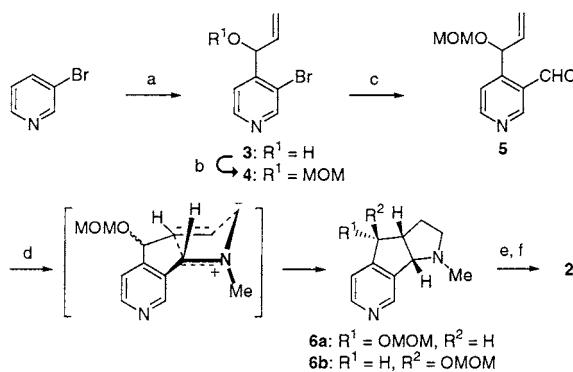
Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels widely distributed in the human brain. These receptors participate in various biological processes related to numerous nervous system disorders.¹ Owing to its ability to target and activate nAChRs, (–)-nicotine (**1**, Scheme 1), a well-known alkaloid present in

disease.² Hence, design, synthesis, and biological evaluation of nicotine analogues has spurred considerable attention over the past decades. In particular, conformationally restricted nicotinoids have become attractive candidates for new selective nAChRs-targeting ligands.^{2a,3,4} Instructively, epibatidine, an alkaloid discovered in 1992, has a rigid structure and displays strong activity despite of its toxicity.⁵ Molecular modeling studies have demonstrated that the two heterocyclic

Scheme 1

tobacco, has been observed to show favorable effects on patients with Alzheimer's, Parkinson's, and Tourette's

(1) (a) Decker, M. W.; Meyer, M. D.; Sullivan, J. P. *Exp. Opin. Invest. Drugs* **2001**, *10*, 1819. (b) Nordberg, A. *Biol. Psychiatry* **2001**, *49*, 200. (c) Paterson, D.; Nordberg, A. *Prog. Neurobiol.* **2000**, *61*, 75. (d) Clementi, F.; Fornasari, D.; Gotti, C. *Eur. J. Pharmacol.* **2000**, *393*, 3.


(2) (a) McDonald, I. A.; Cosford, N.; Vernier, J.-M. *Annu. Rep. Med. Chem.* **1995**, *30*, 41. (b) Decker, M. W.; Aneric, S. P. *Neuronal Nicotinic Recept.* **1999**, 395.

(3) Glennon, R. A.; Dukat, M. *Med. Chem. Res.* **1996**, 465.

(4) (a) Xu, Y.-z.; Choi, J.; Calaza, M. I.; Turner, S. C.; Rapoport, H. *J. Org. Chem.* **1999**, *64*, 4069. (b) Lennox, J. R.; Turner, S. C.; Rapoport, H. *J. Org. Chem.* **2001**, *66*, 7078. (c) Turner, S. C.; Zhai, H.; Rapoport, H. *J. Org. Chem.* **2000**, *65*, 861. (d) Kanne, D. B.; Abood, L. G. *J. Med. Chem.* **1988**, *31*, 506. (e) Ullrich, T.; Binder, D.; Pyerin, M. *Tetrahedron Lett.* **2002**, *43*, 177. (f) Glassco, W.; Suchocki, J.; George, C.; Martin, B. R.; May, E. L. *J. Med. Chem.* **1993**, *36*, 3381. (g) Chavdarian, C. G.; Seeman, J. I.; Wooten, J. B. *J. Org. Chem.* **1983**, *48*, 492.

[†] Shanghai Institute of Organic Chemistry.

[‡] Zhengzhou Tobacco Research Institute.

Scheme 2^a

^a Conditions: (a) LDA (138 mol%), THF, -90°C ; acrolein (177 mol%), THF, -90°C , 75%; (b) NaH (150 mol%), THF, 10–20 $^\circ\text{C}$; MOMCl (130 mol %), THF, rt, 3 h, 92%; (c) BuLi (120 mol %), THF, -78°C , 1 h; DMF (147 mol %), THF, -78°C , 1 h, 92%; (d) sarcosine (105 mol %), DMF, 100–110 $^\circ\text{C}$, 6 h, 84% (**6a:6b** = 1.37:1); (e) 4 M HCl (1400 mol %), 50–60 $^\circ\text{C}$, 8 h; (f) Zn (740 mol %), HCO_2H , reflux, 25 h, 84% (two steps).

rings of nicotine are skewed and approximately perpendicular to one another to secure low-energy conformations.^{3,6}

In connection with our efforts to develop new selective ligands targeting nAChRs, *cis*-1-methyl-1,2,3,3a,4,8b-hexahydropyrrolo[3,2-*f*]pyridine (**2**, Scheme 1) has been designed and pursued as a novel nicotine analogue. The conformation of **2** is rigidified by a methylene bridge erected between C-4 and C-5' of nicotine (**1**).

Herein we wish to report a concise synthesis of **2**, featuring highly efficient construction of the hexahydropyrrolo[3,2-*f*]pyridine tricyclic framework via intramolecular azomethine ylide-alkene [3 + 2] cycloaddition,⁷ which required an appropriately functionalized enal. After preliminary exploration, we settled on a synthetic plan for **2**, as depicted in Scheme 2. Ortho lithiation⁸ of 3-bromopyridine with LDA at -90°C ⁹ followed by treatment with acrolein at the same temperature furnished alcohol **3** in good yield (75%). Alcohol **3** was protected as ether **4** by exposure to MOMCl in the presence of NaH.¹⁰ Use of a slight excess of base, compared to MOMCl, was found to be effective in preventing the

(5) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. *J. Am. Chem. Soc.* **1992**, *114*, 3475.

(6) Elmore, D. E.; Dougherty, D. A. *J. Org. Chem.* **2000**, *65*, 742.

(7) (a) Smith, R.; Livinghouse, T. *Tetrahedron* **1985**, *41*, 3559. (b) Bolognesi, M. L.; Andrisano, V.; Bartolini, M.; Minarini, A.; Rosini, M.; Tumiatti, V.; Melchiorre, C. *J. Med. Chem.* **2001**, *44*, 105.

(8) (a) Corey, E. J.; Pyne, S. G.; Schafer, A. I. *Tetrahedron Lett.* **1983**, *24*, 3291. (b) Numata, A.; Kondo, Y.; Sakamoto, T. *Synthesis* **1999**, *306*. (c) Jones, K.; Fiumana, A.; Escudero-Hernandez, M. L. *Tetrahedron* **2000**, *56*, 397.

(9) A lower temperature than -78°C resulted in a higher yield of the product by diminishing pyridine formation.

formation of the rearranged enol ether byproducts. Formylation¹¹ of **4** (BuLi, -78°C ; DMF, -78°C) led conveniently to aldehyde **5**¹² in 92% yield, setting the stage for intramolecular azomethine ylide-alkene [3 + 2] cycloaddition.⁷ After extensive experimentation, we found that treatment of **5** with sarcosine in DMF at 100–110 $^\circ\text{C}$ for 6 h effected the desired cycloaddition to give two isomers **6a**/**6b** in a combined yield of 84% and in a diastereomeric ratio of 1.37:1 (deduced from ¹H NMR integrals). The structures of **6a** and **6b** were assigned on the basis of the coupling constants for the hydrogen atoms at C-4 (*J* = 8.1 and 4.5 Hz, respectively). Finally, deprotection¹³ of a **6a**/**6b** mixture (4 M HCl, 50–60 $^\circ\text{C}$) followed by zinc-mediated reductive dehydroxylation¹⁴ (Zn, formic acid, reflux) afforded **2**¹⁵ in 84% overall yield for the two steps.

In conclusion, a highly efficient synthesis of **2**, an annulated nicotine analogue, has been accomplished in six steps starting from 3-bromopyridine. Intramolecular azomethine ylide-alkene [3 + 2] cycloaddition proved feasible in construction of the hexahydropyrrolo[3,2-*f*]pyridine tricyclic framework. The present work constitutes a general method for rapid synthesis of a number of nicotine analogues with similar structures.

Acknowledgment. We thank the following agencies for financial support: Chinese Academy of Sciences (“Hundreds of Talent” Program); Science & Technology Commission of Shanghai Municipality (“Venus” Program); National Natural Science Foundation of China (20102008); Ministry of Education, PRC; and The Bureau of Tobacco, PRC.

Supporting Information Available: Experimental procedures and characterization data for new compounds as well as a copy of the ¹H NMR spectrum of aldehyde **5**. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL026876N

(10) Furukawa, N.; Shibutani, T.; Fujihara, H. *Tetrahedron Lett.* **1989**, *30*, 7091.

(11) Comins, D. L.; Killpack, M. O. *J. Org. Chem.* **1990**, *55*, 69.

(12) **5**: Pale yellow oil. ¹H NMR (CDCl_3 , 300 MHz) δ 3.34 (s, 3H), 4.63 (d, *J* = 6.6 Hz, 1H), 4.79 (d, *J* = 6.6 Hz, 1H), 5.22–5.42 (m, 2H), 5.86–5.98 (m, 2H), 7.64 (d, *J* = 5.2 Hz, 1H), 8.80 (d, *J* = 5.2 Hz, 1H), 9.01 (s, 1H), 10.31 (s, 1H). MS (EI) 207 (M^+).

(13) Lindermann, R. J.; Ghannam, A.; Badejo, I. *J. Org. Chem.* **1991**, *56*, 5213.

(14) Proctor, G. R.; Smith, F. J. *J. Chem. Soc., Perkin Trans. 1* **1981**, 1754.

(15) **2**: Pale yellow oil. ¹H NMR (CDCl_3 , 300 MHz) δ 1.62–1.74 (m, 1H), 2.15–2.25 (m, 1H), 2.44–2.55 (m, 1H), 2.55 (s, 3H), 2.77–2.86 (m, 1H), 2.99–3.21 (m, 3H), 3.80 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 5.2 Hz, 1H), 8.42 (d, *J* = 5.2 Hz, 1H), 8.60 (s, 1H); ¹³C NMR (CDCl_3 , 75 MHz) δ 32.23, 39.23, 40.50, 41.92, 57.59, 73.45, 120.34, 139.25, 145.78, 148.34, 152.95. MS (EI) 174 (M^+). Anal. Calcd for $\text{C}_{11}\text{H}_{14}\text{N}_2$: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.69; H, 7.84; N, 16.38.